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Abstract. The aim of this paper is to solve the multiple objective
minimum cost flow problem with fuzzy data using credibility approach.
Considering data as crisp numbers may not be a true assumption, because
data in many real applications cannot be precisely measured. One of the
important methods to deal with imprecise data is fuzzy data. We utilize
meaning credibility measure, α-optimistic and α-pessimistic values, to solve
the fuzzy version of the multiple objective minimum cost flow problem.
Using this approach, the proposed model is transformed to a crisp model.
When credibility levels are available and data are trapezoidal or triangular
fuzzy numbers, the transformed model is equivalent to a multiple objective
minimum cost flow problem with crisp data. In continuation, the concept
of (α, β)-pareto credit is introduced and is shown that the pareto optimal
solutions of the crisp model are (α, β)-pareto credit. Numerical examples
illustrate our proposed method.
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1. Introduction

Minimum cost flow problem is a common problem in combinatorial optimization
and network flows. The problem has many applications in practical problems, such
as transportation, communication, urban design and job scheduling models and so
on [1, 2]. Network flow problems are solved by special methods, which are used even
with moderate computing time. However, network flow problems have inherently
two ore more conflicting objective functions. For example, the criteria may be mini-
mization of cost for selected routes, minimization of arrival times at the destination
points, minimization of deterioration of goods, maximization of safety and etc. So,
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this is realistic that minimum cost flow problems are considered with multiple objec-
tive functions. For a review on minimum cost flow problems and multiple objective
minimum cost flow problems, see Hamacher et al. [5].

The classic minimum cost flow problems suppose that all data are exactly known.
However, crisp data may not be available, because data in many real applications
may be changed in short parts of time. In this case, one of the important methods
for discussion with imprecise data is considering fuzzy data in minimum cost flow
problems.

Several attempts have been made to consider uncertainty data in minimum cost
flow problems. Shih and Lee [11] suggested a fuzzy model of the minimum cost flow
problem using multi-level linear programming problem. Liu and Kao [6] considered
minimum cost flow problem with fuzzy costs and proposed a ranking function to
solve it. Ghatee and Hashemi [4] studied fully fuzzified minimum cost flow problem
considering a large variety of ranking functions. Ghatee and Hashemi [3] also in-
vestigated some different cases of the fuzzy minimum cost flow problem utilizing a
total order and nominal flows.

A common idea to deal with fuzzy data in optimization problems is to convert
fuzzy data into interval data utilizing α-level sets and Zadeh’s extension principle
[15], and construct a family of crisp models for the intervals [5]. Therefore, consid-
erable computational efforts in acquiring solutions of problem are needed. Another
approach to solve fuzzy optimization problems is the concepts of possibility and ne-
cessity measures, which were introduced by Zadeh [14]. In this approach, objective
function is changed to a fuzzy constraint using an additional variable. Then, fuzzy
constraints are transformed into crisp constraints by predefining a possibility level
and using the comparison rule for fuzzy numbers. Then, a crisp program is at-
tained for solving fuzzy program. Although the possibility measure has been widely
used, it has no self-duality property [13]. So, α-cut method and possibility approach
have some difficulties, which were mentioned above. To overcome these difficulties,
the concept of credibility approach was defined to solve optimization problems with
fuzzy data, which has not the mentioned difficulties. The concept of credibility
measure was introduced by Liu and Liu [10]. The concept of credibility theory was
extended by Liu [9]. This paper suggests utilizing the credibility measure to solve
the minimum cost flow problem and multiple objective minimum cost flow problem.

The rest of the paper is organized as follows. In section 2, briefly is introduced the
concept of credibility measure. Section 3 presents the minimum cost flow problem
and its fuzzy version. This fuzzy model is transformed to a crisp model using the
credibility measure. In the next section, an example is provided to illustrate the
proposed method to solve the fuzzy minimum cost flow problem. Multiple objective
minimum cost flow problem and its fuzzy version are given in section 5. In this
section, the concept of (α, β)-pareto credit is introduced. It is shown that the pareto
optimal solutions of the proposed crisp model by credibility measure are (α, β)-pareto
credit. In the next section, an example of the multiple objective minimum cost
flow problem with trapezoidal fuzzy coefficient is provided to explain the proposed
method. The last section comprehends our results.
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2. Credibility measure

Credibility measure was introduced by Liu [8]. Let X be a nonempty set and P (X)
the power set of X. For any A ∈ P (X), Liu and Liu [10] defined a credibility measure
Cr{A} to express the chance that fuzzy event A occurs. The triplet (X, P (X), Cr)
is called a credibility space and fuzzy variable is introduced as a function from this
space to the set of real numbers.
Definitions and theorems presented in this section are became from Liu [9].

Definition 2.1. Cr{.} is a credibility measure if and only if
(i) Cr{X} = 1
(ii) if A ⊂ B Then Cr{A} ≤ Cr{B}
(iii) ∀A ∈ P (X), Cr{A}+ Cr{Ac} = 1

Definition 2.2. Let ξ be a fuzzy variable defined on the credibility space

(X, P (X), Cr).

Then it’s membership function is derived from the credibility measure by

µ(x) = (2Cr{ξ = x}) ∧ 1, x ∈ R

Theorem 2.3. Let ξ be a fuzzy variable with membership function µ. Then for any
set B of real numbers, we have

Cr{ξ ∈ B} =
1
2
(sup
x∈B

µ(x) + 1− sup
x∈Bc

µ(x))

In order to rank fuzzy variables, two critical values optimistic value and pes-
simistic value are used as follows.

Definition 2.4. Let ξ be a fuzzy variable and α ∈ (0, 1]. Then

ξsup(α) = sup{r|Cr{ξ ≥ r} ≥ α}
is called the α-optimistic value to ξ, and

ξinf(α) = inf{r|Cr{ξ ≤ r} ≥ α}
is called the α-pessimistic value to ξ.

Consider a fuzzy program as follows

max f(x, ξ)
s.t gj(x, ξ) ≤ 0, j = 1, · · · , p

where x is a decision vector and ξ is a fuzzy vector. The fuzzy constraints gj(x, ξ) ≤
0, (j = 1, · · · , p) do not define a deterministic feasible set. So, utilizing a confidence
level α and the concept of credibility measure these fuzzy constraints are transformed
to crisp constraints as follows :

Cr{gj(x, ξ) ≤ 0, j = 1, · · · , p} ≥ α

or
Cr{gj(x, ξ) ≤ 0} ≥ αj , j = 1, · · · , p
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where α and αj (j = 1, · · · , p) are confidence levels. Liu and Iwamura [7] suggested
a spectrum of fuzzy chance-constrained programming (CCP) problem as:

max
x

max
f̄

f̄

s.t Cr{f(x, ξ) ≥ f̄} ≥ β

Cr{gj(x, ξ) ≤ 0, j = 1, · · · , p} ≥ α (1.2)

where α and β are the predetermined confidence levels and max f̄ is the β-optimistic
value.

If there are multiple objectives functions, then a chance-constrained multiple ob-
jective programming problem is as:

max
x

[max
f̄1

f̄1, max
f̄2

f̄2, · · · ,max
f̄m

f̄m]

s.t Cr{f(x, ξ) ≥ f̄i} ≥ βi, i = 1, · · · ,m

Cr{gj(x, ξ) ≤ 0, j = 1, · · · , p} ≥ α (2.2)

where α , β1, β2, · · · , βm are the predetermined confidence levels and max f̄i (i =
1, · · · , m) are the βi-optimistic ( i = 1, · · · , m) values to the objective functions.

Theorem 2.5. Assume that the fuzzy vector ξ degenerates to a fuzzy variable ξ with
continuous membership function µ and the function g(x, ξ) has the form g(x, ξ) =
h(x)− ξ. Then Cr{g(x, ξ) ≤ 0} ≥ α if and only if h(x) ≤ kα where

kα =
{

sup{K|K = µ−1(2α)}, if α < 1
2

inf{K|K = µ−1(2(1− α))}, if α ≥ 1
2 .

Theorem 2.6. Assume that the function g(x, ξ) can be rewritten as

g(x, ξ) = h1(x)ξ1 + h2(x)ξ2 + · · ·+ ht(x)ξt + h0(x)

where ξk (k = 1, · · · , t) are trapezoidal fuzzy variables (rl
k, rml

k , rmu
k , ru

k ), (k =
1, · · · , t) respectively. If two functions h+

k (x) = hk(x)∨ 0 and h−k (x) = −(hk(x)∧ 0)
(k = 1, 2, · · · , t) are defined then we have
(a) α < 1

2 , Cr{g(x, ξ) ≤ 0} ≥ α ⇔

(1− 2α)Σt
k=1[r

l
kh+

k (x)− ru
kh−k (x)] + 2α Σt

k=1[r
ml
k h+

k (x)− rmu
k h−k (x)] + h0(x) ≤ 0.

(b) α ≥ 1
2 , Cr{g(x, ξ) ≤ 0} ≥ α ⇔

(2−2α)Σt
k=1[r

mu
k h+

k (x)−rml
k h−k (x)]+(2α−1)Σt

k=1[r
u
kh+

k (x)−rl
kh−k (x)]+h0(x) ≤ 0.

3. Fuzzy minimum cost flow

Let G(N,A) be a directed network with numbers of edges. Every edge has a cost
and a capacity. The cost of each edge must be paid for per unit of flow that goes
through the edges. The capacity of each edge is bound on the amount of flow that
can go through the edge. Let cij is considered as costs and a capacity of upper
bound is uij and lower bound is lij . So cost of flow is the summation of cijxij

for all (i, j) ∈ A. We also let node i ∈ N possess a number of resources b(i),
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respectively. The objective is finding a minimum cost flow. The minimum cost flow
can be formulated as follows:

min f(x) =
∑

(i,j)∈A

cijxij

s.t
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i), i ∈ N

lij ≤ xij ≤ uij

xij ≥ 0, (i, j) ∈ A (1.3)

In this paper, minimum cost flow problem is considered with fuzzy parameters. So,
in model (1.3) costs and lower and upper bounds are fuzzy numbers. Therefore,
model (1.3) can be written as follows:

min f(x) =
∑

(i,j)∈A

c̃ijxij

s.t
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i), i ∈ N

xij − ũij ≤ 0

l̃ij − xij ≤ 0
xij ≥ 0, (i, j) ∈ A (2.3)

where c̃ij are fuzzy costs and ũij and l̃ij are fuzzy bounds. Considering the credibility
approach, the fuzzy model can be written as:

min
x

max
f̄

f̄

s.t Cr





∑

(i,j)∈A

c̃ijxij ≤ f̄



 ≥ β

∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i), i ∈ N

Cr{xij − ũij ≤ 0} ≥ α

Cr{l̃ij − xij ≤ 0} ≥ α

xij ≥ 0, (i, j) ∈ A (3.3)

where α, β are the predetermined confidence levels. Let c̃ij = (cl
ij , c

ml
ij , cmu

ij , cu
ij),

ũij = (ul
ij , u

ml
ij , umu

ij , uu
ij) and l̃ij = (llij , l

ml
ij , lmu

ij , luij) are trapezoidal fuzzy data. At
first, max f̄ , which is β-optimistic value to the objective function, is calculated.
When α, β ≥ 1

2 ,

max f̄ = (2β − 1)
∑

(i,j)∈A

cl
ijxij + (2− 2β)

∑

(i,j)∈A

cml
ij xij

Also, using Theorem 6, we have

Cr{xij − ũij ≤ 0} ≥ α ⇔ xij ≤ (2α− 1)ul
ij + (2− 2α)uml

ij
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Cr{l̃ij − xij ≤ 0} ≥ α ⇔ xij ≥ (2α− 1)luij + (2− 2α)lmu
ij

So, model (3.3) is transformed to the following model:

min (2β − 1)
∑

{(i,j)∈A}
cl
ijxij + (2− 2β)

∑

{(i,j)∈A}
cml
ij xij

s.t
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i), ∀i ∈ N

xij ≤ (2α− 1)ul
ij + (2− 2α)uml

ij

xij ≥ (2α− 1)luij + (2− 2α)lmu
ij

xij ≥ 0, ∀(i, j) ∈ A (4.3)

When α, β < 1
2 , we have

max f̄ = (2β)
∑

{(i,j)∈A}
cmu
ij xij + (1− 2β)

∑

{(i,j)∈A}
cu
ijxij

Using Theorem 6, we have

Cr{xij − ũij ≤ 0} ≥ α ⇔ xij ≤ (1− 2α)uu
ij + 2αumu

ij

Cr{l̃ij − xij ≤ 0} ≥ α ⇔ xij ≥ (1− 2α)llij + 2αlml
ij

So, model (3.3) is converted to the following model as:

min (2β)
∑

{(i,j)∈A}
cmu
ij xij + (1− 2β)

∑

{(i,j)∈A}
cu
ijxij

s.t
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i), ∀i ∈ N

xij ≤ (1− 2α)uu
ij + 2αumu

ij

xij ≥ (1− 2α)llij + 2αlml
ij

xij ≥ 0, ∀(i, j) ∈ A (5.3)

Also, when data are triangular fuzzy numbers, the model (3.3) is transformed to
crisp models corresponding to each α.

Example 3.1. Consider a fuzzy minimum cost flow problem with eight nodes and
eleven arces. The data are presented in Table 1. The data were previously studied
by Shih and Lee [11].
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Node no Supply/ Fuzzy cost Fuzzy lower bound Fuzzy upper bound Note
demand

1 10 (0.5,1,1.5,2) (0,0,0,0) (9,10,11,12) x21

2 20 (0,0,0.5,1) (0,0,0.5,1) (12,13,16,19) x23

3 0 (5,6,7,8) (0,0,0,0) (10,13,14,16) x26

4 -5 (1.5,2,2.5,3) (0,0,0.25,0.5) (10,12,14,15) x14

5 0 (0.5,1,1.5,2) (0,0,0.5,0.75) (9,10,10,12) x34

6 0 (3,4,5,6) (0,0,0.75,1) (11,13,15,16) x35

7 -15 (4,5,6,7) (0,0,0,0) (11,11,13,15) x47

8 -10 (1.5,2,2.5,3.5) (0,0,0,0.25) (6,8,10,12) x56

(6,7,8,9) (0,0,0.5,1) (5,5,8,10) x57

(7,8,9,10) (0,0,0.25,0.5) (10,10,12,14) x68

(8,9,10,11.5) (0,0,0,0) (10,12,14,16) x21

Table1 : Parameters for a fuzzy minimum cost flow problem (with 8 nodes and 11 arcs)

The fuzzy minimum cost flow problem can be formulated as:

min f1 = (0.5, 1, 1.5, 2)x21 + (0, 0, 0.5, 1)x23 + (5, 6, 7, 8)x26 + (1.5, 2, 2.5, 3)x14

+(0.5, 1, 1.5, 2)x34 + (3, 4, 5, 6)x35 + (4, 5, 6, 7)x47 + (1.5, 2, 2.5, 3.5)x56

+(6, 7, 8, 9)x57 + (7, 8, 9, 10)x68 + (8, 9, 10, 11.5)x78

s.t.

x14 + x21 = 10, x21 + x23 + x26 = 20, x34 + x35 − x23 = 0,

x47 − x14 − x34 = −5, x56 + x57 − x35 = 0, x68 − x56 − x26 = 0,

x78 − x47 − x57 = −15, −x68 − x78 = −10,

x21 ∈ (0, 0, 0, 0), x21 ∈ (9, 10, 11, 12), x23 ∈ (0, 0, 0.5, 1),
x23 ∈ (12, 13, 16, 19), x26 ∈ (0, 0, 0, 0), x26 ∈ (10, 13, 14, 16),
x14 ∈ (0, 0, 0.25, 0.5), x14 ∈ (10, 12, 14, 15), x34 ∈ (0, 0, 0.5, 0.75),
x34 ∈ (9, 10, 10, 12), x35 ∈ (0, 0, 0.75, 1), x35 ∈ (11, 13, 15, 16),
x47 ∈ (0, 0, 0, 0), x47 ∈ (11, 11, 13, 15), x56 ∈ (0, 0, 0, 0.25),
x56 ∈ (6, 8, 10, 12), x57 ∈ (0, 0, 0.5, 1), x57 ∈ (5, 5, 8, 10),
x68 ∈ (0, 0, 0.25, 0.5), x68 ∈ (1, 10, 12, 14), x78 ∈ (0, 0, 0, 0),
x78 ∈ (10, 12, 14, 16). (6.3)

We solve this problem with various predetermined confidence levels using model
(4.3), when α, β ≥ 1

2 . The results are demonstrated in Tables 2,3,4 and 5.

β f1 x21 x23 x26 x14 x34 x35 x47 x56 x57 x68 x78

0.5 265 0 10 10 10 6 4 11 0 4 10 0
0.7 240.20 0 10 10 10 6 4 11 0 4 10 0
0.9 226.2 0 13 7 10 6 7 11 3 4 10 0
1 216.5 0 13 7 10 6 7 11 3 4 10 0

Table 2: Solutions with α = 0.5
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β f1 x21 x23 x26 x14 x34 x35 x47 x56 x57 x68 x78

0.5 265 0 12.6 7.4 10 6 6.6 11 2.6 4 10 0
0.7 240.24 0 12.6 7.4 10 6 6.6 11 2.6 4 10 0
0.9 226.36 0 12.6 7.4 10 6 6.6 11 2.6 4 10 0
1 216.7 0 12.6 7.4 10 6 6.6 11 2.6 4 10 0

Table 3: Solutions with α = 0.7

β f1 x21 x23 x26 x14 x34 x35 x47 x56 x57 x68 x78

0.5 265 0 12.2 7.8 10 5 7.2 10 2.2 5 10 0
0.7 240.28 0 10.2 9.8 10 6 4.2 11 0.2 4 10 0
0.9 226.52 0 12.2 7.8 10 6 6.2 11 2.2 4 10 0
1 216.9 0 12 8 10 5 7 10 2 5 10 0

Table 4: Solutions with α = 0.9

β f1 x21 x23 x26 x14 x34 x35 x47 x56 x57 x68 x78

0.5 265 0 12 8 10 5 7 10 2 7 10 0
0.7 240.3 0 10.25 9.75 10 6 4.25 11 0.25 4 10 0
0.9 226.6 0 12 8 10 6 6 11 2 4 10 0
1 217 0 12 8 10 6 6 11 2 4 10 0

Table 5: Solutions with α = 1

According to Tables 2,3,4 and 5, the amount of flow in arcs 21 and 78 for all various
predetermined confidence levels are zero. This can analyze that in the network with
such structure, so we do not need to design arcs 21 and 78. The amount of flow
is constant in seven arcs. This means that the amount of flow is stable against
changing α. Also, from Tables 2,3,4 and 5, the more predetermined credit α, β, the
less cost in objective function.

4. Fuzzy multiple objective minimum cost flow

The multiple objectives including the economic,the shortness,the environmental
and the security indices may be simultaneously considered in minimum cost flow
problem. So, multiple objective minimum cost flow problem is formulated as:

min fk(x) =
∑

(i,j)∈A

ck
ijxij , k = 1, · · · ,K

s.t
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i), i ∈ N

lij ≤ xij ≤ uij

xij ≥ 0, (i, j) ∈ A (1.4)

In multiple objective minimum cost flow problems often finding the ideal solution
that simultaneously maximizes all objectives is impossible. Instead, a solution can
be found that is the best tradeoff between the multiple objective. This solution is
called pareto solution.
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Definition 4.1. x∗ is a weak pareto optimal solution, if x∗ be feasible solution and
there not exist any feasible solution as x such that

∑

(i,j)∈A

ck
ijxij <

∑

(i,j)∈A

ck
ijx

∗
ij (k = 1, · · · ,K).

Definition 4.2. x∗ is a strong pareto optimal solution, if x∗ be feasible solution
and there not exist any feasible solution as x such that

∑

(i,j)∈A

ck
ijxij ≤

∑

(i,j)∈A

ck
ijx

∗
ij (k = 1, · · · ,K)

and for at least a k,
∑

(i,j)∈A ck
ijxij <

∑
(i,j)∈A ck

ijx
∗
ij .

When coefficients of objective functions and upper and lower bounds are fuzzy
numbers, we have a fuzzy program as follows:

min fk(x) =
∑

(i,j)∈A

c̃k
ijxij , k = 1, · · · ,K

s.t
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i), i ∈ N

l̃ij − xij ≤ 0
xij − ũij ≤ 0
xij ≥ 0, (i, j) ∈ A (2.4)

where c̃k
ij are fuzzy costs and ũij and l̃ij are fuzzy bounds. Using credibility measure,

the fuzzy model is transformed to a credibility model as:

min
x

max
fk

fk, k = 1, · · · ,K

s.t Cr





∑

(i,j)∈A

c̃k
ijxij ≤ fk



 ≥ β, k = 1, · · · ,K

∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i), i ∈ N

Cr{l̃ij − xij ≤ 0} ≥ α

Cr{xij − ũij ≤ 0} ≥ α

xij ≥ 0, (i, j) ∈ A (3.4)
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When α, β ≥ 1
2 and fuzzy data are trapezoidal fuzzy numbers, using appropriate

transformations, a crisp model is obtained as:

min (2β − 1)
∑

{(i,j)∈A}
cl,k
ij xij + (2− 2β)

∑

{(i,j)∈A}
cml,k
ij xij , k = 1, · · · ,K

s.t
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i), i ∈ N

xij ≤ (2α− 1)ul
ij + (2− 2α)uml

ij

xij ≥ (2α− 1)luij + (2− 2α)lmu
ij

xij ≥ 0, (i, j) ∈ A (4.4)

When α, β < 1
2 , the model (3.4) is converted to:

min (2β)
∑

{(i,j)∈A}
cmu,k
ij xij + (1− 2β)

∑

{(i,j)∈A}
cu,k
ij xij , k = 1, · · · ,K

s.t
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i), i ∈ N

xij ≤ (1− 2α)uu
ij + 2αumu

ij

xij ≥ (1− 2α)llij + 2αlml
ij

xij ≥ 0 (i, j) ∈ A (5.4)

In continiuation, the concept of pareto optimality is extended to multiple objective
minimum cost flow with fuzzy data, when credibility approach is used to solve the
model.

Definition 4.3. x is α-feasible credit, if
(1)

∑
{j:(i,j)∈A} xij −

∑
{j:(j,i)∈A} xji = b(i), ∀i ∈ N

(2) Cr{l̃ij − xij ≤ 0} ≥ α, ∀(i, j) ∈ A
(3) Cr{xij − ũij ≤ 0} ≥ α, ∀(i, j) ∈ A
(4) xij ≥ 0, ∀(i, j) ∈ A.

Definition 4.4. x∗ is (α, β)-weak pareto credit, if x∗ be α-feasible credit and there
not exist any α-feasible solution as x such that

Cr





∑

(i,j)∈A

c̃k
ijxij <

∑

(i,j)∈A

c̃k
ijx

∗
ij



 ≥ β (k = 1, · · · ,K).

Definition 4.5. x∗ is (α, β)-strong pareto credit, if x∗ be α-feasible credit and there
not exist any α-feasible solution as x such that

Cr





∑

(i,j)∈A

c̃k
ijxij ≤

∑

(i,j)∈A

c̃k
ijx

∗
ij



 ≥ β (k = 1, · · · ,K)

and for at least a k, Cr
{∑

(i,j)∈A c̃k
ijxij <

∑
(i,j)∈A c̃k

ijx
∗
ij

}
≥ β.

Theorem 4.6. The weak pareto optimal solutions in the problem (4.4) are (α, β)-
weak pareto credit.
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Proof. Let x∗ be weak pareto optimal solution in the problem (4.4). Also, suppose
that x∗ is not (α, β)-weak pareto credit. So, there is a α-feasible solution as x such
that
Cr

{∑
(i,j)∈A c̃k

ijxij <
∑

(i,j)∈A c̃k
ijx

∗
ij

}
≥ β, k = 1, · · · ,K =⇒

(2β − 1)
∑

{(i,j)∈A}
cu,k
ij xij + (2− 2β)

∑

{(i,j)∈A}
cmu,k
ij xij

< (2β − 1)
∑

{(i,j)∈A}
cl,k
ij x∗ij + (2− 2β)

∑

{(i,j)∈A}
cml,k
ij x∗ij , k = 1, · · · ,K

From the other side,
=⇒ (2β − 1)

∑
{(i,j)∈A} cl,k

ij xij + (2− 2β)
∑
{(i,j)∈A} cml,k

ij xij

< (2β−1)
∑
{(i,j)∈A} cu,k

ij xij +(2−2β)
∑
{(i,j)∈A} cmu,k

ij xij , k = 1, · · · , K

=⇒ (2β − 1)
∑
{(i,j)∈A} cl,k

ij xij + (2− 2β)
∑
{(i,j)∈A} cml,k

ij xij

< (2β− 1)
∑
{(i,j)∈A} cl,k

ij x∗ij + (2− 2β)
∑
{(i,j)∈A} cml,k

ij x∗ij , k = 1, · · · , K

It contradicts with the fact that x∗ is weak pareto solution in the problem (4.4).
Therefore, x∗ is (α, β)-weak pareto credit. ¤

Theorem 4.7. The strong pareto optimal solutions in the model (4.4) are (α, β)-
strong pareto credit.

Proof. Let, x∗ is strong pareto optimal solution in the problem (4.5). Also, suppose
that x∗ is not (α, β)-strong pareto credit. So, there is a α-feasible solution as x such
that {

Cr
{∑

(i,j)∈A c̃k
ijxij ≤

∑
(i,j)∈A c̃k

ijx
∗
ij

}
≥ β, k = 1, · · · ,K

∃k, Cr{∑(i,j)∈A c̃k
ijxij <

∑
(i,j)∈A c̃k

ijx
∗
ij} ≥ β

⇒





(2β − 1)
∑
{(i,j)∈A} cu,k

ij xij + (2− 2β)
∑
{(i,j)∈A} cmu,k

ij xij

≤ (2β − 1)
∑
{(i,j)∈A} cl,k

ij x∗ij + (2− 2β)
∑
{(i,j)∈A} cml,k

ij x∗ij , k = 1, · · · ,K

∃k, (2β − 1)
∑
{(i,j)∈A} cu,k

ij xij + (2− 2β)
∑
{(i,j)∈A} cmu,k

ij xij

< (2β − 1)
∑
{(i,j)∈A} cl,k

ij x∗ij + (2− 2β)
∑
{(i,j)∈A} cml,k

ij x∗ij

From the other side,{
(2β − 1)

∑
{(i,j)∈A} cl,k

ij xij + (2− 2β)
∑
{(i,j)∈A} cml,k

ij xij

≤ (2β − 1)
∑
{(i,j)∈A} cu,k

ij xij + (2− 2β)
∑
{(i,j)∈A} cmu,k

ij xij , k = 1, · · · ,K

⇒





(2β − 1)
∑
{(i,j)∈A} cl,k

ij xij + (2− 2β)
∑
{(i,j)∈A} cml,k

ij xij

≤ (2β − 1)
∑
{(i,j)∈A} cl,k

ij x∗ij + (2− 2β)
∑
{(i,j)∈A} cml,k

ij x∗ij , k = 1, · · · ,K

∃k, (2β − 1)
∑
{(i,j)∈A} cl,k

ij xij + (2− 2β)
∑
{(i,j)∈A} cml,k

ij xij

< (2β − 1)
∑
{(i,j)∈A} cl,k

ij x∗ij + (2− 2β)
∑
{(i,j)∈A} cml,k

ij x∗ij

It contradicts with the fact that x∗ is strong pareto solution in the problem (4.4).
Therefore, x∗ is (α, β)-strong pareto credit. ¤

Similar Theorems can be stated for the model (5.4).
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Example 4.8. We consider the example in section 4. Suppose, we have two objec-
tives. The second objective is to minimize the total passing time. The data for this
problem is listed in Table 6. This example was previously studied by Shih and Lee
[11].

Node no Supply/demand 1nd objective Fuzzy cost 2nd objective Fuzzy time
1 10 (0.5,1,1.5,2) (2,2,2.5,3)
2 20 (0,0,0.5,1) (1,2,2.5,3)
3 0 (5,6,7,8) (5,6,7,8)
4 -5 (1.5,2,2.5,3) (2,2,3,3)
5 0 (0.5,1,1.5,2) (1.2,2,2,2.5)
6 0 (3,4,5,6) (1.5,2,2,2.5)
7 -15 (4,5,6,7) (6,7,7.5,8)
8 -10 (1.5,2,2.5,3.5) (1,2,2.5,3)

(6,7,8,9) (1,2,2.5,3)
(7,8,9,10) (2,2.5,3,3.5)

(8,9,10,11.5) (2,2.2,3,3.5)

Table 6: Numerical parameters for example 2

Hence, we have the following fuzzy multiple objective minimum cost flow problem:

min f1 = (0.5, 1, 1.5, 2)x21 + (0, 0, 0.5, 1)x23 + (5, 6, 7, 8)x26 + (1.5, 2, 2.5, 3)x14

+(0.5, 1, 1.5, 2)x34 + (3, 4, 5, 6)x35 + (4, 5, 6, 7)x47 + (1.5, 2, 2.5, 3.5)x56

+(6, 7, 8, 9)x57 + (7, 8, 9, 10)x68 + (8, 9, 10, 11.5)x78

min f2 = (2, 2, 2.5, 3)x21 + (1, 2, 2.5, 3)x23 + (5, 6, 7, 8)x26 + (2, 2, 3, 3)x14

+(1.2, 2, 2, 2.5)x34 + (1.5, 2, 2, 2.5)x35 + (6, 7, 7.5, 8)x47 + (1, 2, 2.5, 3)x56

+(1, 2, 2.5, 3)x57 + (2, 2.2, 3, 3.5)x68 + (2, 2.2, 3, 3.5)x78

s.t.

x14 + x21 = 10, x21 + x23 + x26 = 20, x34 + x35 − x23 = 0,

x47 − x14 − x34 = −5, x56 + x57 − x35 = 0, x68 − x56 − x26 = 0,

x78 − x47 − x57 = −15, −x68 − x78 = −10,

x21 ∈ (0, 0, 0, 0), x21 ∈ (9, 10, 11, 12), x23 ∈ (0, 0, 0.5, 1),
x23 ∈ (12, 13, 16, 19), x26 ∈ (0, 0, 0, 0), x26 ∈ (10, 13, 14, 16),
x14 ∈ (0, 0, 0.25, 0.5), x14 ∈ (10, 12, 14, 15), x34 ∈ (0, 0, 0.5, 0.75),
x34 ∈ (9, 10, 10, 12), x35 ∈ (0, 0, 0.75, 1), x35 ∈ (11, 13, 15, 16),
x47 ∈ (0, 0, 0, 0), x47 ∈ (11, 11, 13, 15), x56 ∈ (0, 0, 0, 0.25),
x56 ∈ (6, 8, 10, 12), x57 ∈ (0, 0, 0.5, 1), x57 ∈ (5, 5, 8, 10),
x68 ∈ (0, 0, 0.25, 0.5), x68 ∈ (1, 10, 12, 14), x78 ∈ (0, 0, 0, 0),
x78 ∈ (10, 12, 14, 16). (6.4)
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The proposed model in previous section is applied to solve the above example. There-
fore, the problem is converted to a multiple objective programming problem. Here,
ideal solution method is used to solve the obtained multiple objective program. The
results of solving this problem with various predetermined confidence levels are re-
ported in Tables 7,8,9 and 10.

β f1 f2 x21 x23 x26 x14 x34 x35 x47 x56 x57 x68 x78

0.5 267 225 0 10 10 10 5 5 10 0 5 10 0
0.7 246.2 204.6 0 13 7 10 5 8 10 3 5 10 0
0.9 216.5 230.8 0 13 7 10 5 8 10 3 5 10 0
1 214.1 178.7 0 13 7 10 6 7 11 3 4 10 0

Table 7: Solutions with α = 0.5

β f1 f2 x21 x23 x26 x14 x34 x35 x47 x56 x57 x68 x78

0.5 265 225 0 12.6 7.4 10 5 7.6 10 2.6 5 10 0

0.7 246.08 204.84 0 12.6 7.4 10 5 7.6 10 2.6 5 10 0

0.9 219.12 189.44 0 12.6 7.4 10 5 7.6 10 2.6 5 10 0

1 216.7 179.3 0 12.6 7.4 10 5 7.6 10 2.6 5 10 0

Table 8: Solutions with α = 0.7

β f1 f2 x21 x23 x26 x14 x34 x35 x47 x56 x57 x68 x78

0.5 265 205.08 0 12.2 7.8 10 6 6.2 11 2.2 4 10 0

0.7 245.88 204.84 0 12.6 7.4 10 5 7.6 10 2.6 5 10 0

0.9 232.12 189.92 0 12.2 7.8 10 5 7.2 10 2.2 5 10 0

1 216.9 179.9 0 12.2 7.8 10 6 6.2 11 2.2 4 10 0

Table 9: Solutions with α = 0.9

β f1 f2 x21 x23 x26 x14 x34 x35 x47 x56 x57 x68 x78

0.5 265 219.6 0 12 8 10 6 6 11 2 4 10 0
0.7 245.8 205.2 0 12 8 10 5 7 10 2 5 10 0
0.9 226.6 190.16 0 12 8 10 6 6 11 2 4 10 0
1 222.9 181.4 0 12 8 10 6 5 11 0.2 5 10 0

Table 10: Solutions with α = 1

Here, for α = 0.5 and β = 0.5, we solve this example. The model is as:

min f1 = x21 + 6x26 + 2x14 + x34 + 4x35 + 5x47 + 2x56 + 7x57 + 8x68 + 9x78

min f2 = 2x21 + 2x23 + 6x26 + 2x14 + 2x34 + 2x35 + 7x47 + 2x56 + 2x57

+2.2x68 + 2.2x78
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s.t.

x14 + x21 = 10, x21 + x23 + x26 = 20, x34 + x35 − x23 = 0,

x47 − x14 − x34 = −5, x56 + x57 − x35 = 0, x68 − x56 − x26 = 0,

x78 − x47 − x57 = −15, −x68 − x78 = −10,

x21 ≤ 10, x21 ≥ 0, x23 ≥ 0.5, x23 ≤ 13, x26 ≥ 0, x26 ≤ 13,

x14 ≥ 0.25, x14 ≤ 12, x34 ≥ 0.5, x34 ≤ 10, x35 ≥ 0.75,

x35 ≤ 13, x47 ≥ 0, x47 ≤ 11, x56 ≤ 8, x56 ≥ 0, x57 ≤ 5,

x57 ≥ 0.5, x68 ≤ 10, x68 ≥ 0.25, x78 ≥ 0, x78 ≤ 12 (7.4)

By solving this model, using ideal solution method, the optimal solution is as x21 =
0, x23 = 10, x26 = 10, x14 = 10, x34 = 5, x35 = 5, x47 = 10, x56 = 0, x57 = 5, x58 =
10, x78 = 0 and f1 = 267, f2 = 225 which is presented in the first row of Table 7.
We can test which this solution is (α, β)-pareto solution, for α = 0.5 and β = 0.5.
Utilizing one of the proposed method [12], in order to pareto optimality test for the
obtained solution, we have the following model:

max s1 + s2

s.t.

x21 + 6x26 + 2x14 + x34 + 4x35 + 5x47 + 2x56 + 7x57 + 8x68 + 9x78 + s1 = 267
2x21 + 2x23 + 6x26 + 2x14 + 2x34 + 2x35 + 7x47 + 2x56 + 2x57 + 2.2x68

+2.2x78 + s2 = 225
x14 + x21 = 10, x21 + x23 + x26 = 20, x34 + x35 − x23 = 0,

x47 − x14 − x34 = −5, x56 + x57 − x35 = 0, x68 − x56 − x26 = 0,

x78 − x47 − x57 = −15, −x68 − x78 = −10,

x21 ≤ 10, x21 ≥ 0, x23 ≥ 0.5, x23 ≤ 13, x26 ≥ 0, x26 ≤ 13,

x14 ≥ 0.25, x14 ≤ 12, x34 ≥ 0.5, x34 ≤ 10, x35 ≥ 0.75,

x35 ≤ 13, x47 ≥ 0, x47 ≤ 11, x56 ≤ 8, x56 ≥ 0, x57 ≤ 5,

x57 ≥ 0.5, x68 ≤ 10, x68 ≥ 0.25, x78 ≥ 0,

x78 ≤ 12, s1 ≥ 0, s2 ≥ 0, (8.4)

Optimal solution for above model is as s1 = 0, s2 = 0, x21 = 0, x23 =
13, x26 = 7, x14 = 10, x34 = 5.6, x35 = 7.4, x47 = 10.6, x56 = 3, x57 =
4.4, x68 = 10, x78 = 0. According to the optimal solution in this model, the op-
timal value of the objective function is zero, therefore the obtained solution of the
model (7.4) is pareto solution.

5. Conclusions

In this paper, the concept of credibility measure was used for extension multiple
objective minimum cost flow problem with fuzzy data. In particular, when data
were trapezoidal or triangular fuzzy numbers and confidence levels α and β were
available, the proposed fuzzy model was transformed to a multiple objective linear
programming problem. The concept of (α, β)-pareto credit was defined and is shown
that the optimal solution of crisp program is (α, β)-pareto credit. At last, illustrative
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aspect of the proposed method were presented by a numerical example. The more
differences between the fuzzy multiple objective minimum cost flow models could be
further investigated in the near future. Furthermore, multiple objective minimum
cost flow with stochastic data will be considered in the future.
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